An Interpretable Stroke Prediction Model using Rules and Bayesian Analysis

نویسندگان

  • Benjamin Letham
  • Cynthia Rudin
  • Tyler H. McCormick
  • David Madigan
چکیده

We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. We introduce a generative model called the Bayesian List Machine for fitting decision lists, a type of interpretable classifier, to data. We use the model to predict stroke in atrial fibrillation patients, and produce predictive models that are simple enough to be understood by patients yet significantly outperform the medical scoring systems currently in use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interpretable model for stroke prediction using rules and Bayesian analysis

We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. We introduce a Bayesian method for learning decision lists, a type of interpretable classifier, from data. We use the model to predict stroke in atrial fibrillation patients, and produce predictive models that are as interpretable as the current medical scoring systems that are in widesp...

متن کامل

Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model

We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. Our models are decision lists, which consist of a series of if . . . then. . . statements (e.g., if high blood pressure, then stroke) that discretize a high-dimensional, multivariate feature space into a series of simple, readily interpretable decision statements. We introduce a generati...

متن کامل

Building Interpretable Classifiers with Rules using Bayesian Analysis

We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. Our models are decision lists, which consist of a series of if...then... statements (for example, if high blood pressure, then stroke) that discretize a high-dimensional, multivariate feature space into a series of simple, readily interpretable decision statements. We introduce a generat...

متن کامل

A Semiquantitative Group Testing Approach for Learning Interpretable Clinical Prediction Rules

There is a growing belief that in the face of high complexity, checklists and other simple scorecards or algorithms can significantly improve people’s performance on decision-making tasks [1]. An example of such a tool in medicine, the clinical prediction rule, is a simple decision-making rubric that helps physicians estimate the likelihood of a patient having or developing a particular conditi...

متن کامل

Provide a Predictive Model to Identify People with Diabetes Using the Decision Tree

Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013